On the category of Lie n-algebroids

نویسندگان

  • Giuseppe Bonavolontà
  • Norbert Poncin
چکیده

Lie n-algebroids and Lie infinity algebroids are usually thought of exclusively in supergeometric or algebraic terms. In this work, we apply the higher derived brackets construction to obtain a geometric description of Lie n-algebroids by means of brackets and anchors. Moreover, we provide a geometric description of morphisms of Lie n-algebroids over different bases, give an explicit formula for the Chevalley-Eilenberg differential of a Lie n-algebroid, compare the categories of Lie n-algebroids and NQ-manifolds, and prove some conjectures of Sheng and Zhu [SZ11].

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Horizontal Subbundle on Lie Algebroids

Providing an appropriate definition of a horizontal subbundle of a Lie algebroid will lead to construction of a better framework on Lie algebriods. In this paper, we give a new and natural definition of a horizontal subbundle using the prolongation of a Lie algebroid and then we show that any linear connection on a Lie algebroid generates a horizontal subbundle and vice versa. The same correspo...

متن کامل

Graded Bundles in the Category of Lie Groupoids

We define and make initial study of Lie groupoids equipped with a compatible homogeneity (or graded bundle) structure, such objects we will refer to as weighted Lie groupoids. One can think of weighted Lie groupoids as graded manifolds in the category of Lie groupoids. This is a very rich geometrical theory with numerous natural examples. Note that VB-groupoids, extensively studied in the recen...

متن کامل

Vb–algebroids and Representation Theory of Lie Algebroids Alfonso Gracia-saz and Rajan

A VB–algebroid is essentially defined as a Lie algebroid object in the category of vector bundles. There is a one-to-one correspondence between VB–algebroids and certain flat Lie algebroid superconnections, up to a natural notion of equivalence. In this setting, we are able to construct characteristic classes, which in special cases reproduce characteristic classes constructed by Crainic and Fe...

متن کامل

Banach Lie algebroids and Dirac structures

We consider the category of anchored Banach vector bundles and we discuss the notion of semispray. Adding on the set of sections of an anchored Banach vector bundle a Lie bracket with some properties one gets the notion of Lie algebroid. We prove that the Lie algebroids form also a category. A Dirac structure on a Banach manifold M is defined as a subbundle of the big tangent bundle TM ⊕ T ∗M t...

متن کامل

On Contact and Symplectic Lie Algeroids

In this paper, we will study compatible triples on Lie algebroids. Using a suitable decomposition for a Lie algebroid, we construct an integrable generalized distribution on the base manifold. As a result, the symplectic form on the Lie algebroid induces a symplectic form on each integral submanifold of the distribution. The induced Poisson structure on the base manifold can be represented by m...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2012